Time Is of the Essence

A firefighter radios that he is down, but is too overcome to say where. A hot spot suddenly flares up and explodes, needing more water and manpower. A father frantically tells firefighters he couldn’t reach the back bedroom to get his children out of...


To access the remainder of this piece of premium content, you must be registered with Firehouse. Already have an account? Login

Register in seconds by connecting with your preferred Social Network.

OR

Complete the registration form.

Required
Required
Required
Required
Required
Required
Required
Required
Required
Required

A firefighter radios that he is down, but is too overcome to say where. A hot spot suddenly flares up and explodes, needing more water and manpower. A father frantically tells firefighters he couldn’t reach the back bedroom to get his children out of the house in time.

In each of these instances, time, information and, perhaps most importantly, the whereabouts of each firefighter helping to quench the flames and rescue people are of the utmost importance. The more that those on the scene can discern about a situation, the better the chance they have of reaching people in need or fighting the fire in the most efficient manner possible, especially in the quickly changing environment of a fire.

Soon, indoor-location information systems will help firefighters find a downed colleague or a back bedroom or staircase that is obscured by smoke. Systems designed to help by providing information on the location of firefighters have been in the works for years. The good news is that commercial indoor-location systems, which will eventually become the systems used by firefighters, are being deployed today. It is the experiences of first adopters such as campus and VIP security providers, law enforcement agencies and military training facilities that currently are helping system developers learn exactly what they need to do to tailor their systems to meet the stringent requirements of firefighting environments.

How Location Works

Most people are familiar with global positioning system (GPS) technology and its ability to track objects as they move outdoors using satellites. As long as they are in view of the satellites and equipped with up-to-date and complete software, GPS devices are able to provide end users with a pretty reliable solution. However, most are far from perfect, so people sometimes must use what they can see or know about an area to make corrections.

Indoors, objects also can be tracked using radio waves coming from tags affixed to infrastructure or inventory. This technology also performs well, but retrofitting every existing structure is unrealistic and, in any event, fixed infrastructure or tags are not likely to remain in place or fully functional in a burning building. More recently, Wi-Fi signals have been used by cellular to devices to enhance tracking results. However, accuracy using existing hot spots is at best 10 meters and is often up to 100 meters (or non-existent, where most locations simply don’t have hot spots installed).

 

Where Are

You Going?

With a mind to increase safety and efficiency of firefighters, approximately five years ago, companies began researching the ability to track people as they moved through indoor, underground or unfamiliar GPS-denied locations. Their aim was to deliver precise, infrastructure-free, indoor-location information without using any of the surrounding environment or tags affixed to inside infrastructure.

TRX Systems Inc. developed a system featuring unique sensor-fusion capabilities that integrate a diverse array of sensor and mapping information (when available or able to be inferred from other sensor data) to deliver ever increasingly accurate, infrastructure-free location of people moving around indoors, underground or in any other GPS-denied environment. A person being tracked wears a small tracking unit that communicates through cellular data or radio systems to a command center.

The command center uses the information it receives from the tracking devices to compute and then display the location of all personnel wearing the devices, which also can provide their wearers with voice communications to the command center. The information can be used to track the personnel on existing maps. Where no maps exist, data coming from the sensors can be used to create maps as people wearing the sensors move around the environment. The sensors also can tell people at the command center whether a person is crawling, on his or her back or climbing stairs, etc.

This content continues onto the next page...