Standpipe & High-rise Packs - Part 1

Preparation before an emergency is commonplace to us in the fire service. For fires in standpipe-equipped buildings, this statement couldn't be truer. Is your department prepared to respond to a fire in a standpipe-equipped building? In particular, can...


In many jurisdictions, it's important to know the codes that govern standpipe placement. Farther or more distant locations of outlets can very possibly require more hose. If a recon of the area is not made, members may stretch from a more distant standpipe outlet only to find that they don't have enough hose.

In many situations, we will not require 200 feet. A reconnaissance of the fire floor may indicate that the close proximity of the standpipe outlet and the location of the fire requires only a limited amount of hose. If that's the case, it's a simple manner to hook up what you need on the floor below and leave what isn't required to the side of the hallway. It is far better to have everything you need than to have to run down stairs and get one more item! You can look at the 200 feet of hose as a starting point for your operations.

The Remaining Appliances And Accessories

What are the other appliances and accessories though?

What is the role of the inline pressure gauge (see Photo 5)? Attached to one of the hose packs is an inline pressure gauge. Its purpose is to connect to the standpipe outlet on the floor below the fire and then the appropriate amount of 2 1/2-inch hose is connected to the inline gauge. Why? Well, the firefighter who will be tasked with supplying the line off the standpipe must not over pressurize a large attack line because he could cause more harm than good! By "pin striping" the inline gauge or marking it with the appropriate pressure, it's a matter of opening the outlet until the desired pressure is read.

OK, what about the other accessories in the bag?

The wire brush is used to remove paint or other buildup from the standpipe outlet threads that could prevent hooking up the line. The door chocks prevent doors from closing on a hoseline and acting as a hose clamp. The spanner wrenches are used to aid in removing caps from outlets that have been there for years. The pipe wrench is of value if the control wheel is missing from the outlet.

Converting a Class 2 outlet to a Class 1 outlet

The adaptors and reducers that are also in the bag work like this - Let's say members encounter a standpipe outlet with 1 1/2-inch threads (Class 2 outlet, see NFPA 14, Standard for the Installation of Standpipe and Hose Systems, 2010 Edition, section 3.3.14). How can they use their 2 1/2-inch line? The outlet is a 1 1/2-inch threaded outlet so the first thing we do is to connect a 1 1/2-inch double female to it. Then we connect the 2 1/2-inch to 1 1/2-inch reducer to that. Finally, we take our 2 1/2-inch double male and connect it as the outer most point. Thus, we have created a "Class 1" standpipe outlet from where there was none. It won't provide the same flow as a Class 1 outlet but we'll maximize its potential!

Try this some time as a company drill. Convert a Class 2 standpipe outlet (1 1/2-inch male outlet) to a Class 1 outlet (2 1/2-inch male outlet).

The 1 3/4-inch length of hose and nozzle

What about the length of hose and nozzle that's in the bag? Well this brings us to the part of the article on increasing department flexibility and options!

If reconnaissance reveals that the fire is of limited magnitude such as a mattress burning or cabinets from a kitchen fire or a fire that is smokier than free burning. The company officer has the option of choosing a 1 3/4-inch line at the end of the stretch.

The 2 1/2-inch smoothbore nozzle has a tapered bore that is screwed onto the nozzle shut off (see Photo 6). If this tapered 1 1/4-inch smoothbore is removed (and placed in your turnout coat pocket to avoid losing it), we are left with a 1 1/2-inch threaded outlet on the discharge side of the nozzle. The company officer could order the length of 1 3/4-inch from the bag to be unrolled and connected to the nozzle shut off in an area of safety (such as in the hallway on the floor below) and then stretched to the point of attack.

The reasoning for such an operation is several fold. If staffing is very limited and a nozzle team of two is assembled, they may be unable to control the nozzle reaction of the 2 1/2-inch line. If the nozzle team can't control the reaction safely, they'll do one of two things, either they'll partially close the bale and much of the needed stream reach and flow, or they'll lose control of the line. Neither option is acceptable. What is needed is an option!