Handling Gas Leak Emergencies An Update

On Dec. 27, 1983, our nation suffered a tremendous tragic loss when five Buffalo, NY, firefighters were killed in the line of duty. These brave men answered their final alarm at the Chimera Radiator Co., located at North Division and Grosvenor streets...


On Dec. 27, 1983, our nation suffered a tremendous tragic loss when five Buffalo, NY, firefighters were killed in the line of duty. These brave men answered their final alarm at the Chimera Radiator Co., located at North Division and Grosvenor streets. The cause of this disaster was an illegally...


To access the remainder of this piece of premium content, you must be registered with Firehouse. Already have an account? Login

Register in seconds by connecting with your preferred Social Network.

OR

Complete the registration form.

Required
Required
Required
Required
Required
Required
Required
Required
Required
Required

On Dec. 27, 1983, our nation suffered a tremendous tragic loss when five Buffalo, NY, firefighters were killed in the line of duty. These brave men answered their final alarm at the Chimera Radiator Co., located at North Division and Grosvenor streets. The cause of this disaster was an illegally stored propane cylinder inside of the building that would leak that day and become the fuel source for a major explosion.

Shortly after the devastating explosion, Firehouse® Magazine dispatched Harvey Eisner (assistant editor at the time of the event) to cover this very sad, but important story. Shortly after Eisner's return from Buffalo, he called me with a request to prepare an article to provide guidance to firefighters that would aid their response to gas leak situations. It was a personal honor then to share this information and it is an equal honor to prepare this updated version now. This article is dedicated to those incredibly brave Buffalo firefighters that gave the ultimate sacrifice to their community that day because of an illegally stored and used LPG cylinder. To those members and all of our brothers and sisters who have lost their lives in the line of duty protecting their communities, may God's perpetual light shine upon them all.

Situation Status

America's fire-rescue departments respond to hundreds of "gas leaks" each day. Because of the very nature and repetition, most departments let their guard down a bit. Although most departments would place a gas leak situation in a high-frequency/low-risk event, that is simply not correct. The risk of damage and injury is extremely high at all gas leaks. Sometimes, because of our familiarity with these types of alarms, they do breed contempt and we are complacent.

The stark reality is that a simple "gas leak" can turn horribly deadly very quickly. In fact, our history is dotted with incidents that have caused many lives to be lost (both civilians and firefighters) and millions of dollars of property have been lost as well. This article will once again (see Firehouse®, February 1984, pages 48-50) review the response to "gas leaks." Without a thorough understanding of the basics of the physical properties and operational practices, an effective and safer response is impossible.

Starting the Response

As with all alarms, the initial companies responding must obtain as much information about the incident as possible. First things first — make it a point to determine whether the response is for natural gas (methane); liquefied petroleum gas (typically propane and butane) or gasoline. Your dispatch center should have a protocol that clearly indicates that the "call-taker dispatcher" questions the person requesting help in a way that the product is identified with as much detail as possible. The goal should be that the dispatcher "paints the initial picture" with as many facts as possible from the beginning of the response. This mission-critical information (initial product identification) will set the stage for how companies respond and operate at "gas leak" events.

Over the years, I have attended calls that have been dispatched for a gas leak and have turned out to be gasoline that was spilled. The difference between the various products is expressed in different tactical operations that are dictated by very different vapor densities. This aspect of the physical properties of these chemicals will be discussed later.

Natural gas (methane; Ch4) is the most common utility gas. Typically, methane is distributed, stored and used in the gaseous state. It is highly flammable and much lighter than air with a vapor density of 0.6. In its original form, it is odorless, colorless and tasteless. For safety's sake, a powerful odorant is added to assist in detecting its presence. Usually, ethyl mercaptan (C2H5SH) is the pungent odor additive, and is said to smell like "garlic and onions." The natural gas service agency generally adds the odorant at the point of distribution. In practical terms, this means that a leak at a major transmission pipeline may (most likely will) carry the odorless product, compounding the problem.

This content continues onto the next page...