Confined Space Rescue Operations

Fred Endrikat continues his series on confined space rescues and knowing about your environment.


The federal Occupational Safety and Health Administration (OSHA) requires a written permit entry program to be established for confined space operations. What effect does this have on fire departments? Photo by Bob Stella Operating 250 feet under Boston Harbor during a tunnel...


To access the remainder of this piece of premium content, you must be registered with Firehouse. Already have an account? Login

Register in seconds by connecting with your preferred Social Network.

OR

Complete the registration form.

Required
Required
Required
Required
Required
Required
Required
Required
Required
Required

  1. Identification of all types of energy sources present (or potentially present) within the confined space and the shutdown of all related areas and operating processes.
  2. Isolation of all energy sources.
  3. Locking and tagging of all isolating devices.
  4. Final check and inspection of all the controls involved.

The most common energy sources found in confined spaces are chemical, electrical, gravitation, hydraulic, mechanical, pneumatic or thermal. Also, many confined spaces will have a secondary or multiple sources of energy present that will have to be shut down.

After all energy sources have been positively identified, the isolation of these sources must occur. This is usually accomplished by placing a lock or isolating device to physically block energy to the equipment or area being shut down.

Common examples of energy isolating devices are:

  • Electrical disconnects (electricity should always be isolated at the power supply or circuit breaker if possible).
  • Blanks, slide gates or slip lines (sometimes called "pancakes") used in pipelines to isolate chemical energy when it cannot be closed off or controlled by valves.
  • Blocks and pins used to prevent the movement of machine parts caused by pressure from hydraulic or pneumatic energy or gravitation.

When the identification and isolation of all energy sources has occurred, the locking and tagging of all isolating devices is the next step. Safety equipment suppliers manufacture lock-out supplies for every type of isolating requirement imaginable (such as valve and pipeline lock-outs, electrical plug lock-outs, circuit, fuse and wall switch lockouts), and most industrial settings will have these lock-out devices on hand.

A lock-out kit containing a basic assortment of these items should be carried by fire departments with the potential for confined space rescue operations. If your company arrives at the site of a confined space emergency and no lock-out equipment is available, one member of the company can be stationed at the energy source after it has been shut down to ensure that an accidental start-up does not occur. Under no circumstances should this member leave his or her position unless the device is physically locked out or the firefighter is relieved by orders of the incident commander. If the primary energy source shut-off is a substantial distance from the actual confined space incident site, coordination can be accomplished by communications via portable radio.

Once you are certain that lock-out has occurred, tags may now be installed in all areas required. These tags serve as a warning to anyone approaching the site that work is going on, and under no circumstances should energy be restarted to the affected area. This is an effective communication to subsequently arriving fire department personnel or for civilian workers on the site.

A final check and inspection of all the controls involved (such as valves, levers, start buttons, and switches) should now be accomplished. This final check will ensure that you have shut down the right machine or affected area and that any stored energy involved will be released. Only now will it be safe to proceed with the remainder of the rescue operation.

Extreme caution is the rule when performing lock-out/tag-out procedures: circuit breakers can be mislabelled or rewired, switches can fail, valves can leak. Assume the worst-case scenario, and never proceed until you are completely satisfied that the system cannot be operated and the space is neutralized from all energy sources. The goal of a proper lock-out/tag-out procedure is to eliminate accidental start-ups of equipment, electrical shock, and the release of stored energy or hazardous materials.

Start-up of energy sources after the confined space incident has been resolved is just as important as the original lock-out/tag-out procedure. Because of the potential dangers, under no circumstances should fire department personnel restore and start up machinery, equipment or energy sources. Due to the liability involved, start-up should be the responsibility of the affected party after the incident has been resolved (and any investigations required have been completed) and the scene is released.