The Apparatus Architect – Part 9: Designing Engine Company Apparatus

Tom Shand and Mike Wilbur discuss the layout and design of the pump panel area and the associated plumbing that is required for the engine company to deliver its rated capacity through pre-connected attack lines and appliances.


In the last installment of the Apparatus Architect (May 2002), we reviewed several concepts to improve the safety and design of the front bumper area of pumpers. Front-end and intersection accidents are quite common with all types of apparatus. With a little thought during the design process, the...


To access the remainder of this piece of premium content, you must be registered with Firehouse. Already have an account? Login

Register in seconds by connecting with your preferred Social Network.

OR

Complete the registration form.

Required
Required
Required
Required
Required
Required
Required
Required
Required
Required

In the last installment of the Apparatus Architect (May 2002), we reviewed several concepts to improve the safety and design of the front bumper area of pumpers. Front-end and intersection accidents are quite common with all types of apparatus. With a little thought during the design process, the integrity of the frontal area of your new pumper can be greatly enhanced as well as improving the safety for your personnel riding in the crew area.

7_02_apparatus1.jpg
Photo by Tom Shand
Freeland, PA, operates this well-equipped Seagrave pumper with four low mounted crosslays and a pre-piped Stang gun over the pump. Each gauge is labeled with the required pump pressure for the attack line that is attached to the discharge.

With this article we will discuss the layout and design of the pump panel area and the associated plumbing that is required for the engine company to deliver its rated capacity through pre-connected attack lines and appliances.

Once your apparatus committee has determined the basic fire pump and water tank size, the job of designing the pump panel and piping configuration has just begun. Many departments will carefully discuss the merits of a 1,500-gpm vs. a 1,750-gpm pump or a 750-gallon booster tank vs. a 1,000-gallon booster tank. Whether you are attempting to "buy up" one size or have a repeat performance from an existing design, the pump operator's panel is one of the most important yet overlooked areas regarding engine company design.

The engine chauffeur/pump operator is one of the most important personnel who operate on the fireground. This individual is responsible for obtaining a continuous and reliable water supply and for insuring that the first attack line gets water when called for by the engine company officer. The layout and design of the pump panel is one of the most important pieces of real estate on the apparatus.

While most manufacturers have a standard pump panel design, it is important for the fire department's apparatus committee to specify the location of certain pump instrumentation, suction and discharge valve controls and other components. Unlike buying a car, where you can choose the exterior and interior colors but have no choice on the dashboard layout, the pump panel design on an engine company should be laid out in a logical fashion that meets the operational characteristics and standard operating guidelines of your department.

During a recent major trade show, we took the opportunity to review and compare the layout of many manufacturers' pump panels on units that were on display. It became apparent that everyone had a different idea as to how the panels should be designed and most importantly the color and position of major controls were in different locations on just about every unit. When manufacturers' representatives were asked why certain designs were built in the fashion that they were, the most common response was that the "engineering determines where the controls are placed." Now, if the manufacturer that you have chosen to build your apparatus happens to be a firefighter or has some experience in operating fire pumps, then you have a fairly good chance of getting a pump panel that is laid out in some logical fashion. However, you may be better suited to spend some time in reviewing the proposed layout of your pump panel and discussing this design with the manufacturer at the time of the pre-construction conference. One of the inherent problems of designing fire apparatus is that the manufacturing sector has probably never been to a fire and the firefighters designing the apparatus have no appreciation for the manufacturing sector. This is truly a sad state of affairs.

This content continues onto the next page...