The Apparatus Architect: Part 10

Tom Shand and Mike Wilbur discuss the layout and design of the pump panel area and the associated plumbing that is required for the engine company to deliver its rated capacity through pre-connected attack lines and appliances.


In the last installment of the Apparatus Architect (May 2002), we reviewed several concepts to improve the safety and design of the front bumper area of pumpers. Front-end and intersection accidents are quite common with all types of apparatus. With a little thought during the design process, the integrity of the frontal area of your new pumper can be greatly enhanced as well as improving the safety for your personnel riding in the crew area.

With this article we will discuss the layout and design of the pump panel area and the associated plumbing that is required for the engine company to deliver its rated capacity through pre-connected attack lines and appliances.

Once your apparatus committee has determined the basic fire pump and water tank size, the job of designing the pump panel and piping configuration has just begun. Many departments will carefully discuss the merits of a 1,500-gpm vs. a 1,750-gpm pump or a 750-gallon booster tank vs. a 1,000-gallon booster tank. Whether you are attempting to "buy up" one size or have a repeat performance from an existing design, the pump operator's panel is one of the most important yet overlooked areas regarding engine company design.

The engine chauffeur/pump operator is one of the most important personnel who operate on the fireground. This individual is responsible for obtaining a continuous and reliable water supply and for insuring that the first attack line gets water when called for by the engine company officer. The layout and design of the pump panel is one of the most important pieces of real estate on the apparatus.

While most manufacturers have a standard pump panel design, it is important for the fire department's apparatus committee to specify the location of certain pump instrumentation, suction and discharge valve controls and other components. Unlike buying a car, where you can choose the exterior and interior colors but have no choice on the dashboard layout, the pump panel design on an engine company should be laid out in a logical fashion that meets the operational characteristics and standard operating guidelines of your department.

During a recent major trade show, we took the opportunity to review and compare the layout of many manufacturers' pump panels on units that were on display. It became apparent that everyone had a different idea as to how the panels should be designed and most importantly the color and position of major controls were in different locations on just about every unit. When manufacturers' representatives were asked why certain designs were built in the fashion that they were, the most common response was that the "engineering determines where the controls are placed." Now, if the manufacturer that you have chosen to build your apparatus happens to be a firefighter or has some experience in operating fire pumps, then you have a fairly good chance of getting a pump panel that is laid out in some logical fashion. However, you may be better suited to spend some time in reviewing the proposed layout of your pump panel and discussing this design with the manufacturer at the time of the pre-construction conference. One of the inherent problems of designing fire apparatus is that the manufacturing sector has probably never been to a fire and the firefighters designing the apparatus have no appreciation for the manufacturing sector. This is truly a sad state of affairs.

The first consideration may be the position of the pump panel at the side, top or rear of the apparatus. While we will not enter into the debate regarding side-mount vs. top-mount designs, the overall layout must fit into the department's tactical operations. For example, if your department operates with multiple pre-connected lines in a crosslay or Mattydale arrangement, then these lines must be located low to the ground with the valve control handles positioned in a straight row from front to rear to match the position of the respective attack line. The Syracuse, NY, Fire Department has operated engine companies with four pre-connected Mattydale crosslays since 1972. Over the years, their pump panels have incorporated several subtle changes like the position of the master gauges and engine governor controls to make the driver's job easier when operating on the fireground.

This content continues onto the next page...