Chief Concerns: Electromagnetic Pulse Awareness for the Fire Service

I magine a world without power, computers, radios and telephones. More specifically, imagine modern emergency response without any of the above. Americans have come to rely on the prompt and effective delivery of fire, police, rescue and emergency medical...


To access the remainder of this piece of premium content, you must be registered with Firehouse. Already have an account? Login

Register in seconds by connecting with your preferred Social Network.

OR

Complete the registration form.

Required
Required
Required
Required
Required
Required
Required
Required
Required
Required

The E3 component is very different from the other two components of nuclear EMP. An E3 pulse is the most damaging because it lasts the longest and can travel long distances along a power grid, resulting in widespread damage. E3 is a very slow pulse, lasting tens to hundreds of seconds, caused by a nuclear detonation disrupting the Earth’s magnetic field. It has the power to damage power grids that could take six to 18 months to repair.

 

Assessing the threat

Congress established the EMP Commission in 2001 to assess the threat of EMP to the U.S. The commission’s 2004 report states that EMP is one of a small number of threats that can hold our society at risk of catastrophic consequences and that it has the capability to produce significant damage to critical infrastructures. The 2004 and 2008 commission reports share a main theme – identifying infrastructure in the U.S. and its vulnerability to EMP and making recommendations to protect against EMP. Each report identifies critical infrastructures, such as electric power, transportation, telecommunications, food, water, banking, government and emergency services. The commission’s report on emergency services relates directly to the impacts of EMP attacks on fire and EMS delivery. One threat to the U.S. is the possibility of a terrorist EMP attack involving a missile deployed from a ship near a busy seaport.

The theory behind electromagnetic pulse is that the higher the nuclear detonation in the atmosphere, the more widespread the electromagnetic damage of the blast. A nuclear weapon detonated at an altitude of 250 miles over the central U.S. would cover the entire country and parts of Canada and Mexico with its primary EMP. An implication for operational planning is that a potential EMP threat must be anticipated in every locality during the first minutes and perhaps hours after a nuclear attack is initiated.

 

Communications danger

The main concern behind an EMP attack is that it could catastrophically impact the nation’s electrical system, a system integral to the functioning of all interdependent infrastructures in the U.S., including emergency communication systems. The EMP Commission references that mobile radio communications equipment can be expected to experience disruption and failure at EMP threat levels that are likely to be experienced. Moreover, emergency services are critically dependent on the commercial telephone network, on electric power and thus on fuel for backup generators.

National Fire Protection Association (NFPA) 1221, Standard for the Installation, Maintenance and Use of Emergency Service Communications Systems, applies to public emergency services communications systems and facilities. This includes dispatching, telephone, public reporting and one- and two-way radio systems. Even though the standard does not directly identify the impacts of EMP, it does so indirectly by stating (in 4.6 Security) that the communications centers and other buildings that house essential operating equipment shall be protected against damage from terrorism. Research finds that civilian fire and EMS communications are not adequately protected from the effects of EMP.

Aware of the catastrophic potential of EMP, the U.S military has developed standards for the design, engineering, fabrication, installation and testing of mission-critical equipment against high-altitude electromagnetic pulse (HEMP). Whereas military standards MIL-STD-188-125-1 and MIL-STD-188-125-2 reference hardening and shielding of mission-critical equipment, NFPA 1221 uses terminology such as transient voltage surge suppression (TVSS), grounding systems, lightning and circuit protection. The military standards address concepts and terminology, such as hardness and shielding, which are infrequently if ever used in the fire service. A report titled “EMP Mitigation-Protecting Land Mobile Vehicles from HEMP Threat Environment” (Protection Technology Group) addresses the challenges of protecting vehicles from EMP. It acknowledges that modern civilian and military vehicles equipped with transistor-driven radio, power and control electronics are highly vulnerable to electromagnetic damage.

 

Vulnerability to EMP