The Apparatus Architect 1/14

Since our last installment of the Apparatus Architect covered the importance of carrying the appropriate complement of ground ladders on aerial apparatus, we believe equal time should be devoted to having a discussion on hose loads on engine companies...


To access the remainder of this piece of premium content, you must be registered with Firehouse. Already have an account? Login

Register in seconds by connecting with your preferred Social Network.

OR

Complete the registration form.

Required
Required
Required
Required
Required
Required
Required
Required
Required
Required

Since our last installment of the Apparatus Architect covered the importance of carrying the appropriate complement of ground ladders on aerial apparatus, we believe equal time should be devoted to having a discussion on hose loads on engine companies. Much like the quint aerial has gained acceptance for truck company service, many departments have acquired multi-purpose rescue engine units in an effort to carry additional tools and equipment. Unfortunately, in an effort to package the necessary equipment, hydraulic rescue tools, ground ladders and hand tools results in a much higher hosebed than was initially anticipated. Some fire departments go to final inspection and do not even recognize their own truck.

A fire department recently placed into service a new pumper equipped with a 1,000-gallon water tank that was designed to carry the normal complement of engine company tools. During the design process, the apparatus committee decided to specify an L-shaped water tank with the thought that this could lower the height from the ground to the bottom of the hosebed, making hoseline advances safer and easier to accomplish. Many apparatus manufacturers do not detail or specify this dimension on their blueprints, so fire departments may be surprised when they measure the hosebed height during the final inspection to learn that the combination of features that they asked for resulted in a less-than-satisfactory arrangement.

A number of large departments, including Atlanta, District of Columbia, Milwaukee and New York City, have employed bulk-style water tanks, which resulted in the hosebed being down at the level of the chassis frame rails. With a 500-gallon water tank, this enabled personnel to back stretch from the apparatus while safely standing on the rear step. While the National Fire Protection Association (NFPA) 1901 Standard for Automotive Fire Apparatus permits the use of folding steps and other devices to access the hosebed area, some body configurations can result in difficult maneuvers to gain access to the hosebed areas and can become a safety concern.

For this reason, some departments have favored the use of crosslay or speedlay hosebeds for pre-connected attack lines. Depending on the space required for pump-panel controls and equipment storage above the fire pump, this configuration may provide an alternative to having all of the required attack lines loaded in the rear of the apparatus. Careful consideration must be made to ensure that these hosebeds are located no more than 64 to 66 inches from the ground and can be easily repacked when pulled. On many custom-chassis apparatus, the combination of the diesel-particulate filter and other exhaust-system components can impact the running board step surfaces on the right side of the vehicle. Additionally, engine companies whose apparatus are equipped with multiple transverse hosebeds must continually train to leave sufficient space in front of the structure to allow adequate room to position the aerial apparatus.

 

subhead

When developing specifications for transverse hosebeds, details should be provided to call out the required clear height and width of each hosebed and the type of nozzle that will be used on the attack line. Some departments have been dismayed when they determine that their nozzles with pistol-grip-style handles do not fit into the available space. The type of crosslay cover and netting on the exterior of the hosebed can also impact how you may load your hose and the steps needed to rapidly deploy these lines. While a minor point in the overall construction of the apparatus, these areas should be covered in detail during the engineering conference with the manufacturer prior to construction of the apparatus.

This content continues onto the next page...