Commercial Aircraft Rescue

The past two articles regarding aircraft rescue operations and structural fire departments – “Aircraft Rescue & Structural Fire Departments” in the November 2012 issue of Firehouse ® Magazine and “Dangers to Responders at General-Aviation...


To access the remainder of this piece of premium content, you must be registered with Firehouse. Already have an account? Login

Register in seconds by connecting with your preferred Social Network.

OR

Complete the registration form.

Required
Required
Required
Required
Required
Required
Required
Required
Required
Required

All windows, doors and hatches in pressurized aircraft are “plug type.” That means internal pressure created from the inside to the outside of the aircraft helps holds these items in place and creates a seal. Therefore, depending on the model of aircraft, the door may have to actually move into the aircraft before it will swing out wards. Exit windows that are removable, in many cases, must go into the aircraft before being discarded out of the aircraft. All exits are required to be identified by a two-inch coloring that contrasts the main body of the aircraft. This makes the emergency escape area easily identifiable. In each case, “try before you pry” because these areas of the aircraft are very strong and may defeat extrication tools.

The windshield on the flight deck is very thick and difficult to cut. There are other dangers as well to responders from aircraft doors and windows. Everyone is familiar with the premise of escape slides and how they work. If a responder opens a door that is “armed,” the slide could activate, resulting in injury or death. These slides deploy in a matter of seconds and once they start, they will not stop until fully inflated.

If there are survivors in the aircraft, use these slides to your advantage to help evacuate them. Then the slide can be deflated or removed for entry/exit ladder placement. In cases where the aircraft is sitting low to the ground, slides may be able to be used for entry by rescuers. Over-wing windows can be removed from the outside of an aircraft, but usually they must go inward before being removed. Over-wing exit doors can weigh between 30 and 50 pounds. If anyone is still in the aircraft and is ambulatory, and you make an opening in that aircraft, they will be coming out at you in a hurry.

Once everyone who can leave the aircraft has self-evacuated, then entry can be made by emergency responders. Use any normal opening or one created by crash impact forces before attempting to forcibly cut your way in. Forcing entry to an aircraft is difficult, time-consuming and dangerous. It often has to be done from an elevated platform of some type. If the aircraft has landed in a remote area or on uneven terrain, this task will be even more difficult. Working from a ladder is difficult with power rescue tools or rescue saws.

If the skin of the aircraft must be cut with rescue saws, use the width of three windows to make your opening, if possible. This will provide a wider opening and will make it easier to move in equipment and evacuate the injured. You will make three or four cuts. Three cuts will create a “fold-down” or “fold-to-the-side” opening in that section of the fuselage. If the choice is made totally to remove the cut section, make your bottom cut first.

Opening cabin doors

Aircraft cabin doors will open and move to the outside of the aircraft and then move forward, open in an slide up into the body of the aircraft or drop down to the ground. All doors have instructions on how to open them, but the instructions are usually stickers that may burn away if they are involved in fire.

Some aircraft have cabin entry doors with stairs attached to them. These doors usually have a doorsill height of less than seven feet and are not equipped with slides. These doors are very heavy and are usually equipped with inertia reels or are counter-balanced to assist in their lowering to the ground. Some of these doors weigh more than 600 pounds. In the event of an accident the inertia reels could become dislodged and not support the weight of the door as intended. If the door is opened in this condition, it will fall freely to the ground. Never open a cabin door and stand beneath it.

Smoke can travel

There are no fire stops on aircraft. Every aircraft has channels and openings for wiring and piping to run through it. These areas allow for fuel lines, hydraulic lines and wiring for flight-control surfaces and electric to pass through them, to name just a few of the many components. Smoke on an aircraft could come from a remote area far from where it presents itself. Above the ceilings in most aircraft it is one open space from the front to the rear. There may or may not be a void space in smaller-body aircraft, but larger aircraft may have a large void space that runs the length of the aircraft above the cabin ceiling.

When dealing with a fire on an aircraft, many conditions that are found in structural firefighting may be present such as backdraft and flashover. Self-contained breathing apparatus (SCBA) must be worn at all times during any type of fire condition involving aircraft.