Why register? ...To Enhance Your Experience
+ Reply to Thread
Page 3 of 4 FirstFirst 1234 LastLast
Results 41 to 60 of 63
  1. #41
    Forum Member Rescue101's Avatar
    Join Date
    Jun 2001
    Location
    Bridgton,Me USA
    Posts
    8,162

    Default

    Quote Originally Posted by MG3610 View Post
    a little late here...but...

    So if I get this, as soon as you hang a pulley and use the aerial as a high overhead COD, youve doubles the load because (if I think this correctly) the load exerts its exact weight on one side of the pulley, and your haul force exerts equal, or maybe a tad more due to inedfficiency, force on the other side of the pulley.

    Right?

    If this is the case, a rescuer, baslet, and load can easily add up to 700lbs, so youre looking at a 1400lb load with no shocking. Whats the answer here to avoid this dangerous predicament, if my assumption is correct?
    This is where the ROPE guys lose me. I use COD every day,I just use wire rope instead of kermantle. A Lineal load applied to a vertical structure(Ladder,wrecker boom,etc.)ASSUMING that it is vertical loading is the weight of the object being lifted,PERIOD. Minus input forces if the MA is low and any swing or shock forces.Our Tower is set up to do these kinds of lifts,if I were doing it with our old Ladder,I'd bridle the tip so both sides were loaded evenly.If you use a 3 to 1 ma,it will take 100# input to raise a 300# load. If you go 4 to 1 Ma it is easier on the directional and the patient,but it takes more rope. 75# input to raise 300#. Or is there something about rope rigging that changes the physics I use everyday? T.C.
    Last edited by Rescue101; 04-24-2011 at 04:08 PM.


  2. #42
    Forum Member Engine4Cap's Avatar
    Join Date
    Mar 2011
    Posts
    30

    Default

    Did some searching, and answered my own question.
    Last edited by Engine4Cap; 04-24-2011 at 03:03 PM.

  3. #43
    Forum Member
    Join Date
    Apr 2001
    Posts
    169

    Default

    Rescue 101 -

    If I read your post correct your school of thought is an incomplete depiction of what a MA is doing throughout the system. N2DFIRE explained the accurately, but here is another view.

    1. A pulley is a simple machine that produces a 2:1 advantage (this is in a vacuum and under the correct conditions.)

    2. The pulley provides this advantage whether attached to the load or when used as a COD. That is ALL pulleys is a system are multiplying forces. Your input to MA theory is correct, but your only considering the total output of the MA and not its impact on the anchor. Use the T method to trace forces to see what the anchor is actually seeing.

    With that said, I'll use an example you have used. A 4:1 is commonly used attached to the end of a high-point. When used vertically it would be a 4:1. While the load is seeing a 4:1 MA, the anchor is seeing a 5:1. (Remember the pulley has no idea what end is moving the load). Therefore your anchor end is seeing on additional unit of tension (whatever that is).

    This additional load is minimal, but many times it is not accounted for when teams rig an MA to an anchor to haul a load. Obviously the higher the load weight the more impact this additional unit can make.

    The ideal way to use an aerial as a high-point is to run the rope up the bed of the ladder and over a pulley. This is why many manufacturers are making pulley plates that mount to the ladder. By doing this it eliminates additional multiplication of forces, eliminates the potential of torquing the ladder, and allows the ladder itself to absorb forces inline (the resultant force will point more toward the ladder vs perpendicular to the ladder). Maybe Eric Ulner will chime in on the effects of resultant forces on the ladder. I know works with Reed and would imagine they use these calculations frequently with the AV

    Of course there are other methods....

    Mike - If I had to go through all of that to stabilize the aerial I would devise another plan. Part of TRT is efficiency and good use of resources. Tying back a ladder, in my opinion, is neither of those. After 21 years I have learned to never say never, but let's say it would be a last resort and I would have to be lifting more than a rescuer and victim.

  4. #44
    Forum Member Rescue101's Avatar
    Join Date
    Jun 2001
    Location
    Bridgton,Me USA
    Posts
    8,162

    Default

    Quote Originally Posted by jmatthe2 View Post
    Rescue 101 -

    If I read your post correct your school of thought is an incomplete depiction of what a MA is doing throughout the system. N2DFIRE explained the accurately, but here is another view.

    1. A pulley is a simple machine that produces a 2:1 advantage (this is in a vacuum and under the correct conditions.)

    2. The pulley provides this advantage whether attached to the load or when used as a COD. That is ALL pulleys is a system are multiplying forces. Your input to MA theory is correct, but your only considering the total output of the MA and not its impact on the anchor. Use the T method to trace forces to see what the anchor is actually seeing.

    With that said, I'll use an example you have used. A 4:1 is commonly used attached to the end of a high-point. When used vertically it would be a 4:1. While the load is seeing a 4:1 MA, the anchor is seeing a 5:1. (Remember the pulley has no idea what end is moving the load). Therefore your anchor end is seeing on additional unit of tension (whatever that is).

    This additional load is minimal, but many times it is not accounted for when teams rig an MA to an anchor to haul a load. Obviously the higher the load weight the more impact this additional unit can make.

    The ideal way to use an aerial as a high-point is to run the rope up the bed of the ladder and over a pulley. This is why many manufacturers are making pulley plates that mount to the ladder. By doing this it eliminates additional multiplication of forces, eliminates the potential of torquing the ladder, and allows the ladder itself to absorb forces inline (the resultant force will point more toward the ladder vs perpendicular to the ladder). Maybe Eric Ulner will chime in on the effects of resultant forces on the ladder. I know works with Reed and would imagine they use these calculations frequently with the AV

    Of course there are other methods....

    Mike - If I had to go through all of that to stabilize the aerial I would devise another plan. Part of TRT is efficiency and good use of resources. Tying back a ladder, in my opinion, is neither of those. After 21 years I have learned to never say never, but let's say it would be a last resort and I would have to be lifting more than a rescuer and victim.
    Better try again, A pulley is ONLY 2:1 if it is ON the load(Load lines),IE one end deadlined, then run thru a pulley(on the load)then back to the winch(driven end,be it winch or man).Otherwise, it is merely a COD. MA ONLY occurs in lines to load. In MY world if you snatch off a deadman (tree) you have the weight of the vehicle(3000#) on BOTH sides of that block(and the tree). If you anchor one end and put the block on the vehicle NOW you have a 2:1 with 1500# on each leg. I understand MA VERY well,I use it just about every day. Where I get confused is in the ROPE world where apparently everything I've ever been taught(or learned)is different. The one CONSTANT is MA is determined by lines to LOAD.If the line go to a high directional or multiple anchor points they are just COD UNLESS they go to load. T.C.
    Last edited by Rescue101; 04-25-2011 at 06:41 PM.

  5. #45
    Forum Member
    Join Date
    Feb 2005
    Posts
    197

    Default

    OK - correct me if I'm wrong. (I never was good at physics.)

    A single pulley, hung from your platform. a 300lb load on the end. To lift the load, there will be roughly 300lbs on each side of the rope, and 600lbs on the anchor, right? The pulley used in this fashon acts as a force multiplier, and no MA is achieved, correct?

  6. #46
    MembersZone Subscriber N2DFire's Avatar
    Join Date
    Feb 2000
    Location
    S.W. Virginia
    Posts
    1,286

    Default

    Quote Originally Posted by Rescue101 View Post
    Better try again, A pulley is ONLY 2:1 if it is ON the load(Load lines),IE one end deadlined, then run thru a pulley(on the load)then back to the winch(driven end,be it winch or man).Otherwise, it is merely a COD. MA ONLY occurs in lines to load. In MY world if you snatch off a deadman (tree) you have the weight of the vehicle(3000#) on BOTH sides of that block(and the tree). If you anchor one end and put the block on the vehicle NOW you have a 2:1 with 1500# on each leg. I understand MA VERY well,I use it just about every day. Where I get confused is in the ROPE world where apparently everything I've ever been taught(or learned)is different. The one CONSTANT is MA is determined by lines to LOAD.If the line go to a high directional or multiple anchor points they are just COD UNLESS they go to load. T.C.
    Hey 101,
    Based on this I think we all talking Apples n Apples we're just looking at them from different view points.

    Let's stick with your example(s) of the 3000# car.

    You are correct that if you have the car directly behind your wrecker and you run your cable down to the car, thru a snatch block, and back to your wrecker that each section of line is only carrying 1500#'s thus the 2:1 advantage. But the MA didn't make the car lighter, it just divided the work from one run of cable to two. The hook on the snatch block is still carrying the whole 3000# "load" of the car.

    Now let's say the car is sitting beside your wrecker and you run your line out to a (really big) tree and thru a snatch block on the tree and then back to the 3000# car beside you. As you pointed out above; there is no MA to this system and as you begin to pull you now have 3000#'s of force throughout the cable from the car all the way to the winch. The physics in this example work the same as above - it's just the loads that have changed. Instead of having 1500#'s per line off the pulley, you now have 3000#'s on each line. So now the hook on the snatch block (and thus the tree / anchor) is seeing 6000#'s of force.

    Translate that from the horizontal plane to vertical:
    You are standing on the ground beside a 250# load with a pulley as a high COD on an aerial tip. One end of the rope is on the load, the other in your hands. As you begin to apply 250#'s of force into one side of the system, the load then resists with an equal 250#'s on the other side - thus the aerial tip is now supporting 500#'s of total downward pulling force (load).

    This is where the concern of overloading aerials from use as a high directional comes in. The closer the angle of your pulling forces comes to 180 - the greater the doubling force on the anchor for the pulley.

    These same basic principles would still apply if you were using a "complex" MA system to raise the load. The total net force on the ladder would be the weight of the load plus the input force required to lift it.

    250# load with a 4:1 MA = 250# load + 63.5# input force = 313.5# tip load.

    The solution to this is (as others have stated) to pull along the direction of the ladder down toward the turn table. This in turn decreases the angle between the ropes from the 180 degree position to something closer to 90 degrees and in turn reduces the overall loading force on the aerial tip.

    Without having to learn complex trigonometry, vector analysis, etc. - for the "average" line firefighter a good set of general rules for aerials as High Directionals are:

    1) The force on the ladder tip will ALWAYS be more than just the load
    2) If you're pulling from ground to tip and back to ground (close to a 180 degree bend around the pulley) then 1/2 tip load capacity should be your MAX load weight.
    3) If you're pulling from ground to tip and back down along the ladder bed (closer to a 90 degree bend) then 2/3 tip load capacity should be your MAX load weight.

    Caveat to rules 2 & 3 - the angle and extension of your aerial device may affect it's tip load limits - also it WILL affect the angle of the rope around the pulley so you should take this into consideration when making your estimates on lifting capacity at every incident.

    Bear in mind that these are just generalized rules and that you should have someone "do the math" for your device(s) and have them verified by the Mfg prior to making any lifts.

    Hope this clears the confusion and gets us all back on the same page. As I said before I think we're all understanding how the system(s) perform - I think we're just looking at them from different points of view or looking at the force(s) on different components of the system.
    Take Care - Stay Safe - God Bless
    Stephen
    FF/Paramedic
    Instructor

  7. #47
    MembersZone Subscriber N2DFire's Avatar
    Join Date
    Feb 2000
    Location
    S.W. Virginia
    Posts
    1,286

    Default

    Quote Originally Posted by MEAN15 View Post
    OK - correct me if I'm wrong. (I never was good at physics.)

    A single pulley, hung from your platform. a 300lb load on the end. To lift the load, there will be roughly 300lbs on each side of the rope, and 600lbs on the anchor, right? The pulley used in this fashon acts as a force multiplier, and no MA is achieved, correct?
    Yes sir - that is correct - provided you are pulling directly back down to the ground.

    The factor of "Force Multiplication" is related to the angle of wrap around the pulley. The closer to 180 degrees -the closer to double the force.

    Also - all of this is theoretical load since there are various losses in a real world system that would in turn further increase the anchor (aerial device) load.

    Edit - sorry so slow to reply to this one - I was writing the "book" of a post above *LOL*
    Last edited by N2DFire; 04-26-2011 at 08:50 AM.
    Take Care - Stay Safe - God Bless
    Stephen
    FF/Paramedic
    Instructor

  8. #48
    Forum Member Rescue101's Avatar
    Join Date
    Jun 2001
    Location
    Bridgton,Me USA
    Posts
    8,162

    Default

    Quote Originally Posted by MEAN15 View Post
    OK - correct me if I'm wrong. (I never was good at physics.)

    A single pulley, hung from your platform. a 300lb load on the end. To lift the load, there will be roughly 300lbs on each side of the rope, and 600lbs on the anchor, right? The pulley used in this fashon acts as a force multiplier, and no MA is achieved, correct?
    Correct........T.C.

  9. #49
    Forum Member Rescue101's Avatar
    Join Date
    Jun 2001
    Location
    Bridgton,Me USA
    Posts
    8,162

    Default

    Quote Originally Posted by N2DFire View Post
    Hey 101,
    Based on this I think we all talking Apples n Apples we're just looking at them from different view points.

    Let's stick with your example(s) of the 3000# car.

    You are correct that if you have the car directly behind your wrecker and you run your cable down to the car, thru a snatch block, and back to your wrecker that each section of line is only carrying 1500#'s thus the 2:1 advantage. But the MA didn't make the car lighter, it just divided the work from one run of cable to two. The hook on the snatch block is still carrying the whole 3000# "load" of the car.

    Now let's say the car is sitting beside your wrecker and you run your line out to a (really big) tree and thru a snatch block on the tree and then back to the 3000# car beside you. As you pointed out above; there is no MA to this system and as you begin to pull you now have 3000#'s of force throughout the cable from the car all the way to the winch. The physics in this example work the same as above - it's just the loads that have changed. Instead of having 1500#'s per line off the pulley, you now have 3000#'s on each line. So now the hook on the snatch block (and thus the tree / anchor) is seeing 6000#'s of force.

    Translate that from the horizontal plane to vertical:
    You are standing on the ground beside a 250# load with a pulley as a high COD on an aerial tip. One end of the rope is on the load, the other in your hands. As you begin to apply 250#'s of force into one side of the system, the load then resists with an equal 250#'s on the other side - thus the aerial tip is now supporting 500#'s of total downward pulling force (load).

    This is where the concern of overloading aerials from use as a high directional comes in. The closer the angle of your pulling forces comes to 180 - the greater the doubling force on the anchor for the pulley.

    These same basic principles would still apply if you were using a "complex" MA system to raise the load. The total net force on the ladder would be the weight of the load plus the input force required to lift it.

    250# load with a 4:1 MA = 250# load + 63.5# input force = 313.5# tip load.

    The solution to this is (as others have stated) to pull along the direction of the ladder down toward the turn table. This in turn decreases the angle between the ropes from the 180 degree position to something closer to 90 degrees and in turn reduces the overall loading force on the aerial tip.

    Without having to learn complex trigonometry, vector analysis, etc. - for the "average" line firefighter a good set of general rules for aerials as High Directionals are:

    1) The force on the ladder tip will ALWAYS be more than just the load
    2) If you're pulling from ground to tip and back to ground (close to a 180 degree bend around the pulley) then 1/2 tip load capacity should be your MAX load weight.
    3) If you're pulling from ground to tip and back down along the ladder bed (closer to a 90 degree bend) then 2/3 tip load capacity should be your MAX load weight.

    Caveat to rules 2 & 3 - the angle and extension of your aerial device may affect it's tip load limits - also it WILL affect the angle of the rope around the pulley so you should take this into consideration when making your estimates on lifting capacity at every incident.

    Bear in mind that these are just generalized rules and that you should have someone "do the math" for your device(s) and have them verified by the Mfg prior to making any lifts.

    Hope this clears the confusion and gets us all back on the same page. As I said before I think we're all understanding how the system(s) perform - I think we're just looking at them from different points of view or looking at the force(s) on different components of the system.
    In purist terms,correct. THIS is where it gets interesting with the ladder. If you run the RUNNING line over the rung and down the top of the ladder(walking side) NOW you've lessened the ultimate load as opposed to pulling vertically. See WHY I get confused? In my world the load is the constant and the only thing you can do to change it is apply MA or DECREASE resistance. As I said earlier,our Platform is DESIGNED and rated to do this type of work(within operational limits) so I never spent much time thinking about it. But it certainly has been an educational thread. Thank you all, T.C.
    Last edited by Rescue101; 04-26-2011 at 04:59 PM.

  10. #50
    MembersZone Subscriber N2DFire's Avatar
    Join Date
    Feb 2000
    Location
    S.W. Virginia
    Posts
    1,286

    Default

    Quote Originally Posted by Rescue101 View Post
    See WHY I get confused?
    Trust me brother you are NOT the only one.

    About 95% of the time I have to sketch the system out on paper so I can "see" what the forces are doing before I really understand it myself.


    Quote Originally Posted by Rescue101 View Post
    But it certainly has been an educational thread. Thanks you all, T.C.
    I have recently began taking some training in the realm of "Big Rig Rescue" and all I can say is my hat is off to you guys in the recovery industry. The system physics may work the same but you guys are some real wizards when it comes to force / load calculations & rigging.

    In reading some of the various threads on here regarding Heavy Rescue / Recovery - I have learned a lot from your post - so let's just say I'm finally getting to pay a little back for a change.
    Take Care - Stay Safe - God Bless
    Stephen
    FF/Paramedic
    Instructor

  11. #51
    Back In Black ChiefKN's Avatar
    Join Date
    Feb 2003
    Location
    The Nice Part of New Jersey
    Posts
    6,981

    Default

    Quote Originally Posted by Rescue101 View Post
    But it certainly has been an educational thread. Thanks you all, T.C.
    I have to agree.... flashbacks to 9th grade physics.

    Good stuff.
    I am now a past chief and the views, opinions, and comments are mine and mine alone. I do not speak for any department or in any official capacity. Although, they would be smart to listen to me.

    "The last thing I want to do is hurt you. But it's still on the list."

    "When tempted to fight fire with fire, remember that the Fire Department usually uses water."

  12. #52
    Forum Member Engine4Cap's Avatar
    Join Date
    Mar 2011
    Posts
    30

    Default

    Am I safe in saying....If the load indicator on the platform is still in the green for load limit and there is no side loading we should be good? So we don't have to rack our brains on the MA and F, etc, etc. I'll agree though I totally draw things out many times.

  13. #53
    Forum Member
    Join Date
    Mar 2010
    Location
    eastern WA
    Posts
    93

    Default ladder analysis

    Attached is the Newton's 2nd Law analysis of three MA systems for the idealized case of
    * no acceleration of the load (load is already moving at constant speed)
    * direct downward pull
    * pulley's with 100% efficiency

    Note that the force on the tip of the ladder is a maximum of twice the weight of the load for a COD, and asymptotically approaches a minimum of the weight of the load as the MA is gradually increased.

    If the pull is directed along the length of the ladder instead of directly downwards, the force on the tip of the ladder will have a component along the length of the ladder. This will decrease the moment exerted about the base of the ladder (a good thing).

    Also note that the forces can momentarily exceed many times the weight of the load during while it is accelerating, e.g. being moved up to a constant speed from rest. This is one of the reasons we require a minimum 10:1 SSSF in rope rescue.
    Attached Images Attached Images

  14. #54
    Forum Member
    Join Date
    Jul 2006
    Location
    Southern Illinois
    Posts
    132

    Default

    Quote Originally Posted by jmatthe2 View Post
    Rescue 101 -

    ... Maybe Eric Ulner will chime in on the effects of resultant forces on the ladder. I know works with Reed and would imagine they use these calculations frequently with the AV
    Finally acknowledging your nod, jmatthe2...

    Posts by N2DFire and servantleader have it pretty much covered. Happy 4th.

  15. #55
    MembersZone Subscriber Golzy12's Avatar
    Join Date
    Jun 2005
    Posts
    476

    Default

    Sorry to drag up an old thread but there is some great info in here. Pat Rhodes did a great video on this very subject you can find it here http://www.rescueresponse.com/store/...e-rigging.html

  16. #56
    Forum Member
    Join Date
    Jun 2013
    Posts
    118

    Default

    I had a few questions regarding using a tower ladder as a high point.

    About a year ago, my volunteer establishment had a trench rescue about 25' below grade. I was not there unfortunately but I was there for the critique.

    Basically the tower ladder was backed up into position, but no one there knew how to properly set it up for a successful rescue so half the guys were trying to figure it out, and the other half just went down there with a backboard and carried the guy up from a set of stairs that went down into the hole. (it was an underground gym with a truss roof that the lawn was being built on top of and it collapsed)

    I've gone over it in my head a few times but still can't figure out how to do a couple things.

    The attachment is what I thought would need to be set up.

    The stokes was tied off to a main line, which goes up to the pulley attached under the basket, and then back to a pulley clipped into the tow hooks on the rear of the ladder with tandem prusiks as a one way braking mechanism.

    The 4:1 is clamped onto the main line, as a means of hoisting it back while someone manages the prusiks with each pull to remove the slack.

    So, assuming all this even works, once the stokes is above grade, how do we get it back onto land from hanging below the basket in the middle of nowhere? I was told you never use the tower controls as a means of moving anyone. Once you start this operation you shut the ladder down. Would it be ok to retract the boom at that point or even swing it to the side as long as EVERYTHING is clear to do so?

    Would you need another rope to the stokes tied off before hand, that you can simply use to reel the stokes in while letting slack out on the main line?
    Attached Images Attached Images  

  17. #57
    MembersZone Subscriber
    Join Date
    Oct 2002
    Location
    Port Allen, LA
    Posts
    148

    Default

    [QUOTE I looked into the laws regarding using them as a crane and have found no OSHA rule, CFR, state law, state administrative rule, manufacturer rule, or nfpa recommendation that would forbid this.
    thanks again,
    mike[/QUOTE]

    Hi Mike,

    Here is what OSHA has to say on the subject:

    OSHA refers to the moving of personnel by crane in two standards: 29 CFR 1910.180 (a general industry standard) and 29 CFR 1926.550 (a construction standard). 1910.180 Crawler locomotive and truck cranes: Starting with: 1910.180 (h)(3)(v)

    (v) No hoisting, lowering, swinging, or traveling shall be done while anyone is on the load or hook.

    1926.550 is a construction standard. It says people can be moved by crane as long as the following conditions are met: The crane must be set up level within 1% of grade; The personnel must ride in a load rated man basket; There must be a pre-lift safety meeting of all involved; The crane must do a test lift with the basket empty to be sure the crane is properly positioned; The man basket must then be loaded with the expected amount of weigt to be moved and another test lift must be performed; The crane operator must have positive communications with the people in the man basket.

    Many of you are likely in states that do not have a state OSHA plan, like me here in Louisiana. That means you fall under federal OSHA regulations which state that emergency responders are not required to follow the OSHA regulations. Under a state OSHA plan the emergency responders are required to follow OSHA standards or risk potentially hefty fines and possible jail time depending on how badly you screwed up.

    Even if you are in a non-OSHA state the lawyers can and will refer to the best practices contained in the appropriate OSHA standard and increase their chances of a successful lawsuit. All you have to do is be able to show in a court of law that what you did that got someone hurt or killed was a safer practice than the OSHA standard that covered it.

    I use cranes (actual ones, not fd ladder trucks) in industry during rescue standby jobs a lot. They are used as a fixed overhead anchor and not for moving personnel unless we can meet the requirements in 1926.550 and during an emergency we donít have time to go through all that pre-lift stuff.

    Mike

  18. #58
    Forum Member MichaelXYZ's Avatar
    Join Date
    Jan 2012
    Location
    San Diego
    Posts
    354

    Default

    I thought all states were held to OSHA standards, but states could adopt their own standards only if the standards meet or exceed the fed OSHA standard.

  19. #59
    MembersZone Subscriber
    Join Date
    Oct 2002
    Location
    Port Allen, LA
    Posts
    148

    Default

    Quote Originally Posted by MichaelXYZ View Post
    I thought all states were held to OSHA standards, but states could adopt their own standards only if the standards meet or exceed the fed OSHA standard.
    No, there are 26 non-OSHA states. That means they do not have to comply with OSHA regulations and cannot be cited by OSHA. If their state adopts a state OSHA plan then the FD's must follow those regulations.

    For example, an industrial facility in a non-OSHA state has a worker trapped in a permit-required confined space. The plant has no rescue team so they call 911 and the local FD responds. The FD is not very good and manages to kill 6 would-be rescuers. OSHA cannot cite that FD for their shortcomings but they will cite the plant because when the FD crosses the fence line on to plant property OSHA will consider the FD to be plant employees and will cite the plant because the FD was not properly trained and equipped for confined space rescue.

    Same scenario in an OSHA state = citations for the FD.

    Same scenario in either state probably = successful lawsuit.

    Please note......I am not advocating not attempting a rescue because of fears of a lawsuit or OSHA citation. Protect your people, do what you need to do to save the victim and deal with whatever happens after that. In the case of OSHA, we will contest the citation. National average is 98% likelihood for having the severity of the citation reduced, having it reduced to a paperwork violation or thrown out completely.

    Mike

  20. #60
    Forum Member MichaelXYZ's Avatar
    Join Date
    Jan 2012
    Location
    San Diego
    Posts
    354

    Default

    I don't mean to quibble, but I disagree, or perhaps I am not understanding you correctly. Below is an excerpt from the OSH act of 1970.

    SEC. 18. State Jurisdiction and State Plans
    (a) Nothing in this Act shall prevent any State agency or court from asserting jurisdiction under State law over any occupational safety or health issue with respect to which no standard is in effect under section 6.

    (b) Any State which, at any time, desires to assume responsibility for development and enforcement therein of occupational safety and health standards relating to any occupational safety or health issue with respect to which a Federal standard has been promulgated under section 6 shall submit a State plan for the development of such standards and their enforcement.

    (c) The Secretary shall approve the plan submitted by a State under subsection (b), or any modification thereof, if such plan in his judgement --

    29 USC 667
    (1) designates a State agency or agencies as the agency or agencies responsible for administering the plan throughout the State,

    (2) provides for the development and enforcement of safety and health standards relating to one or more safety or health issues, which standards (and the enforcement of which standards) are or will be at least as effective in providing safe and healthful employment and places of employment as the standards promulgated under section 6 which relate to the same issues, and which standards, when applicable to products which are distributed or used in interstate commerce, are required by compelling local conditions and do not unduly burden interstate commerce,
    Source: https://www.osha.gov/pls/oshaweb/owa...HACT&p_id=3372

    Also from OSHA FAQ

    What is a State OSHA Program?

    Section 18 of the Occupational Safety and Health Act of 1970 (the Act) encourages States to develop and operate their own job safety and health programs. OSHA approves and monitors State plans and provides up to 50 percent of an approved plan's operating costs.

    There are currently 22 States and jurisdictions operating complete State plans (covering both the private sector and State and local government employees) and 5 - Connecticut, Illinois, New Jersey, New York and the Virgin Islands - which cover public employees only. (Eight other States were approved at one time but subsequently withdrew their programs).

    Alaska
    Arizona
    California
    Connecticut
    Hawaii
    Illinois Indiana
    Iowa
    Kentucky
    Maryland
    Michigan
    Minnesota
    Nevada
    New Mexico
    New Jersey
    New York North Carolina
    Oregon
    Puerto Rico
    South Carolina
    Tennessee
    Utah
    Vermont
    Virgin Islands
    Virginia
    Washington
    Wyoming

    (Please note that the Connecticut, Illinois, New Jersey, New York and Virgin Islands plans cover public sector employment only)

    States must set job safety and health standards that are "at least as effective as" comparable federal standards. (Most States adopt standards identical to federal ones.) States have the option to promulgate standards covering hazards not addressed by federal standards.

    http://www.osha.gov/dcsp/osp/faq.html#oshaprogram
    Last edited by MichaelXYZ; 06-29-2013 at 10:16 PM.

Thread Information

Users Browsing this Thread

There are currently 1 users browsing this thread. (0 members and 1 guests)

Similar Threads

  1. Metz Raptor
    By chiefanthony in forum Apparatus Innovation
    Replies: 111
    Last Post: 05-10-2008, 12:09 AM
  2. Aerial Ladder Priority in '06?
    By firemakeith in forum Federal FIRE ACT Grants & Funding
    Replies: 5
    Last Post: 01-17-2006, 11:35 PM
  3. World Of Fire Report: 08-04-05
    By PaulBrown in forum World of Fire Daily Report
    Replies: 0
    Last Post: 08-06-2005, 09:25 AM
  4. World Of Fire Report: 02-26-02
    By PaulBrown in forum World of Fire Daily Report
    Replies: 0
    Last Post: 02-27-2002, 07:25 PM
  5. We have to look into our darkest day
    By harlemBrother in forum Firefighters Forum
    Replies: 3
    Last Post: 02-02-2002, 06:41 PM

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts