Firefighting: Still A Dangerous Occupation!

The fire service is the most dangerous occupation, career and volunteer, in the U.S. This is a reality. We cannot let statistics tell us different.


Firefighting is dangerous. We intuitively believe this but it is not true according to a recently published article that states "firefighting as an occupation does not have as many fatalities as other occupations" (Peterson, 2002 p1). Peterson's conclusion is based in part on a U.S. Department of Labor/Bureau of Labor Statistics (BLS) study (Clarke and Zak, 1999) that included firefighter fatalities from 1992-1997. When Peterson (2002, p2) used the same statistics procedure on the year 2000 firefighter date, he calculates that "firefighting is not even in the top 15 occupations in respect to risk of fatal injury."

When we read the articles we knew they were incorrect in our gut but the research and statistical facts proved them to be correct. Further examination of the research methodology revealed that the statistical foundation of these conclusions was incorrect. The fundamental error is based on the assumption that firefighting is just like any other occupation. Therefore, it can be directly compared to other occupations using the same normalization procedure.

The Peterson article and the BLS study compared death rates per 100,000 employed workers. They derived their output by dividing the total number of fatalities in each occupation by the total number of employed workers. The output was computed by multiplying 100,000 to arrive at the fatality rate per 100,000 workers. What this method assumes is that 100,000 workers in each occupation are equalized and the fatality rate per 100,000 employees can be reported.

With this statistic each occupation can be compared to each other. This method of calculating risk assumes that all occupations are equally at risk. But the procedure does not define "at risk." For example, firefighters have a fatality rate of 18.3 per 100,000 workers and roofers have a fatality rate of 27.5 per 100,000 workers (Clarke and Zak, 1999). When comparing these two fatality rates, it appears roofers are at a higher risk of death on the job, than firefighters.

The critical departure we take from previous firefighter fatality studies is trying to determine when are firefighters or other workers, actually at risk? This question may seem ridiculous but stay with us because answering it will change how firefighter injury and fatality statistics are analyzed.

Is a firefighter at risk when they are in the station washing the fire truck? Is a firefighter at risk when they are eating dinner or sleeping at the station? Is a volunteer firefighter at risk while waiting at home for an emergency call? The answer is no. When is a roofer at risk? This answer is much easier. A roofer is at risk when they are engaged in the job of roofing. So the new concept we are presenting is that "time at risk" of injury or death must be considered when determining the risk factor of any occupation.

Both of us have nailed shingles to a roof at least once but we do not consider ourselves roofers. We apologize to all roofers if we get these next calculations wrong, but we are attempting to illustrate our concept. If I am a roofer I am probably engaged in roofing activities i.e. on the roof, climbing, carrying, cutting, or hammering 6 hours out of every 8-hour day of work. Based on this assumption a roofer is at risk 6 hours out of every 8-hour workday.

Now if our friend the roofer works 6 days a week (we gave him 8-hours overtime) in a 48-hour workweek the roofer is at risk (engaged in doing the job) 36 hours. The hard part of this new concept is figuring out firefighter "time at risk." Is a firefighter at risk when they are on an EMS call? That is a FLSA question, which is beyond this article. Our firefighter assumption is that a firefighter is "at risk" whenever they are on an emergency call. This time period commences when they leave the station, lights and siren and continues until they return to the station, regardless of the type of emergency. Now how do we calculate this considering all the different fire departments from the New York City Fire Department to the Laurel Volunteer Fire Department?

This content continues onto the next page...