Commercial Vehicle Extrication Skills - Part 2

We continue our discussion in the area of heavy commercial vehicle extrications with a focus on decisions that need to be made on the emergency scene, and what type of resources will be needed to mitigate the incident. As we noted last time in our...


We continue our discussion in the area of heavy commercial vehicle extrications with a focus on decisions that need to be made on the emergency scene, and what type of resources will be needed to mitigate the incident. As we noted last time in our discussions, dealing with these large road haulers will tax the capabilities of even the best rescue companies; it is of paramount concern that rescuers respect the potential for considerable long-term operations and multiple-action areas within the inner scene circle.

First, upon receiving a dispatch to an extrication that involves a large commercial vehicle, be sure that the right resources are responding as soon as possible. Many companies utilize an automatic aid system that will provide for notification and dispatch of multiple heavy-duty rescue companies to the incident. Considering the potential for multiple injuries and significant entrapment issues, it is wise to get the troops on the road immediately; they can always be sent back if they are not needed. Be sure to make contact with a response-capable heavy wrecker company; in the event of an under-ride or rollover incident involving passenger vehicles and commercial vehicles, a heavy-duty wrecker with a rotating boom assembly would prove to be advantageous on the scene. Coordinate these resources with local law enforcement, as many police departments have these resources categorized and “on standby” to respond to major roadways in your response area. Be sure to notify them immediately upon arrival if you think that their services might be needed (photo 1).

There will be significant potential for an increased hazardous-material release risk. Most times, when dealing with passenger vehicle extrications, the fuel system will remain somewhat intact; there may be a leaking fuel line, but for the most part it will be able to be controlled with minimal additional resources. Commercial trucks, however, pose a larger risk. Notwithstanding the materials that are being transported, most large tractor trailers can carry upwards of 300 gallons of fuel in dual saddle tanks directly under the cab. Not only is this a potential combustibility issue, but unless the material is contained and diverted, patient access may require your rescuers to work directly over the product when it is released onto the roadway. Have the resources needed to handle this issue quickly so the extrication can be set into action.

Operational Considerations

Upon arrival, after scene safety has been secured, there is one critical question that has to be answered: Where is/are the victim(s)? The victim location will define what type of operation will be needed (lift, move, swing, drag, etc…) and what additional resources are going to be needed. In the event the victim is in the cab of the commercial vehicle, consider this: your rescuers will be working above ground level. Where will they operate from? You do not want your members operating from the thin metal step treads that are mounted on the vehicles’ fuel tanks; this is a recipe for definitive injuries to your staff (photo 2).

Working with the equipment on the responding apparatus, many rescue companies will have to set crib stacks and ladders for makeshift “scaffolds” just for crews to work from. Instead, think about requesting a flatbed car carrier to the scene; this would serve as a sturdy platform for the rescue crews to work from. Secondly, stabilization needs will be difficult. Frame rails for commercial vehicles are much higher than what are found on passenger vehicles. Larger-sized cribbing may be needed, not only for an increase in weight support, but to provide for height gain in our crib stacks. Furthermore, when it comes to cribbing these vehicles, the cab of the truck will need additional cribbing from the frame rails to the underside of the cab (photo 3). These vehicles not only have body-mount assemblies, but many of these are spring-loaded or pneumatically charged to adjust the ride for the operator. The cab “load” will also have to be directed to the ground through the frame rails.

This content continues onto the next page...