Extrication Challenges of Advanced Steel In Vehicles: Part 6

  SUBJECT: Advanced Steel TOPIC: Extrication Challenges of Advanced Steel in Vehicles — Part 6 OBJECTIVE: The vehicle rescue instructor/trainer will conduct effective training that simulates the presence of Advanced Steel in an older...


  SUBJECT: Advanced Steel TOPIC: Extrication Challenges of Advanced Steel in Vehicles — Part 6 OBJECTIVE: The vehicle rescue instructor/trainer will conduct effective training that simulates the presence of Advanced Steel in an older, acquired vehicle. TASK...


To access the remainder of this piece of premium content, you must be registered with Firehouse. Already have an account? Login

Register in seconds by connecting with your preferred Social Network.

OR

Complete the registration form.

Required
Required
Required
Required
Required
Required
Required
Required
Required
Required

 

SUBJECT: Advanced Steel

TOPIC: Extrication Challenges of Advanced Steel in Vehicles — Part 6

OBJECTIVE: The vehicle rescue instructor/trainer will conduct effective training that simulates the presence of Advanced Steel in an older, acquired vehicle.

TASK: Given an acquired vehicle for extrication training that does not have Advanced Steels in its structure, the vehicle rescue instructor/trainer shall take steps to simulate the presence of these steels in the vehicle and then shall assign the "work-around" techniques to rescue crews.

One of the most significant challenges today for vehicle rescue instructors is that we want our rescue teams to be able to handle entrapment situations involving new, late-model vehicles that have advanced steels such as Boron or Martensite integrated into their structure. Our reality as an instructor, however, is that it's next to impossible to get a new car to cut up that actually has this kind of steel in it. So, what do we do?

In Part 5 of this series on Advanced Steels, published in September of 2009, alternative rescue techniques were presented for crews that might encounter an entrapment situation involving advanced steel but not have a power rescue cutter that can cut through it. Referred to as advanced steel "work-around" techniques, it becomes very apparent that rescuers need to practice tasks such as the "Pie Cut", "Lifting the B-Pillar", "Spreading the B-Pillar", "Ramming the Roof Off", and "Total Sunroof" evolutions in training sessions.

There are two steps that an extrication instructor can take to better prepare their crews for just such a situation. The first step is to create an advanced steel simulation vehicle. The second step is assigning crews to complete "work-around" tasks on this older acquired vehicle.

To simulate the presence of advanced steel in an older, junk vehicle that is to be used for extrication training, a can of high-visibility spray paint is required. Prior to the start of your extrication training session, bright orange, yellow, green or florescent pink spray paint is applied to the side structure of a four-door vehicle. With the doors open, on the driver's side of this vehicle, paint the entire A-pillar, the entire B-pillar, and all of the rocker panel. Paint the C-pillar from the roofline down to just below the top edge of the door. Then skip the area near the door latch and finish by painting the lower portion of the C-pillar below the latch down to the rocker. This paint scheme simulates one advanced steel design used in selected General Motors vehicles.

On the passenger's side of the advanced-steel simulation vehicle, paint the A-pillar from the roofline down to the top front door hinge. Paint the roofline from the A-pillar rearward to the connection with the C-pillar. Finally, paint the B-pillar from the roofline down to the bottom hinge of the rear door. This paint scheme simulates one style of advanced steel used in Chrysler Motors vehicles.

Explain to your students that all painted edges of the structure on this car magically now contain advanced steel. Crews working on this car will simulate that they do not have a power rescue cutter tool that can get through this steel. They will have to accomplish "work-around" techniques that you will assign to them.

The instructor has to assign the "work-around" techniques on this vehicle in a very specific sequence. Following this order of tasks will allow the instructor to get the most value out of this one acquired vehicle.

The four-door vehicle is sitting on a level surface on its four wheels. The vehicle has been painted with high-visibility spray paint that is now dry. Participants in the class have been organized into small working teams for this training. The vehicle has to be stabilized. All four doors can actually be opened and cut off at the hinges. The instructor then follows the recommended order of tasks, assigning one task after another to the participant teams until all eight "work-around" tasks have been completed.

This content continues onto the next page...