Introducing the Contemporary Fireground

Mark Emery discusses why it's time for the contemporary fire service to adapt strategically and tactically.Why It's Time For the Contemporary Fire Service to Adapt Strategically and Tactically


Mark Emery discusses why it's time for the contemporary fire service to adapt strategically and tactically. Why It's Time For the Contemporary Fire Service to Adapt Strategically and Tactically Characteristics of the structural fireground began to evolve 50 or 60 years ago. Collectively...


To access the remainder of this piece of premium content, you must be registered with Firehouse. Already have an account? Login

Register in seconds by connecting with your preferred Social Network.

OR

Complete the registration form.

Required
Required
Required
Required
Required
Required
Required
Required
Required
Required

Mark Emery discusses why it's time for the contemporary fire service to adapt strategically and tactically.

Why It's Time For the Contemporary Fire Service to Adapt Strategically and Tactically

Characteristics of the structural fireground began to evolve 50 or 60 years ago. Collectively, these changes are so significant that the North American fire service should have adapted strategically and tactically. For the most part, the fire service missed or ignored the strategic significance of this transformation. Although each of these changes has been discussed individually, the strategic significance of this transformation has not been addressed collectively - as a single challenge.

While adhering to our traditional strategic priorities of life safety, incident stabilization and property conservation, the North American fire service needs to acknowledge these changes and discuss appropriate strategic and tactical adjustments. It is not appropriate to continue business as usual in and around a theater of action that has not been "usual" for decades.

This article will describe how the traditional square-foot (structural) fireground has evolved (for the worse); perhaps the information that follows will serve as the catalyst for spirited discussion about how we can adapt to the contemporary fireground strategically and tactically.

Strategic Factors

Four key strategic factors contributed to the transformation of the traditional fireground of 100 years ago to the contemporary fireground:

  1. Building construction
  2. Fire load
  3. Time
  4. Encapsulation

It is imperative that these factors be quantified, their significance understood and that they become routine considerations during the development of a contemporary fireground action plan.

Prior to the 1960s and 1970s, the traditional fireground featured the following two factors: conventional building construction and low-Btu fire loads.

Building Construction

Conventional construction refers to structures that were assembled according to practices passed from generation to generation by skilled craftsmen. Conventional buildings required a lot of time and skill to assemble. Conventional, or "legacy," construction projects required a lot of dead load and time. Because they represent the greatest cost of a construction project, dead load and time are two things that developers don't like. Conventional structures filled with conventional contents offered the fire service the following general characteristics: mass, compression, few connections, low-Btu fire load, more time before failure and threshold of pain.

- Mass - Mass refers to dead load. Dead load includes joists, doors, columns, windows, roofing material, girders and heating, ventilating and air conditioning (HVAC) equipment. Conventional buildings relied on mass rather than on precision engineering. A heavy-timber building is perhaps the best example of a conventional building that features enormous structural members. Each load-bearing structural member was huge. An unintended benefit to the contemporary fire service is that the mass of this excessive dead load provides un-designed fire resistance.

- Compression - Compression refers to how the dead load and live load of a conventional structure are delivered to the earth. All loads must be delivered to the foundation as compression; loads cannot arrive at the foundation as tension. Conventionally constructed buildings relied on compression more than on tension. Simply stated, compression requires mass, tension reduces mass.

A building that relies on compression features a lot of columns and bearing walls. To achieve the large, uninterrupted spans made possible by lightweight construction in a contemporary building, heavy timber was the only option in conventional buildings. The greater the distance between columns or bearing walls, the deeper the girders, purlins and joists must be (think of a header spanning a door or window in a stud wall).

This content continues onto the next page...