Managing The "Room And Contents Syndrome"

David P. Fornell describes a common and sometimes fatal mistake involving departments that utilize insufficient flow for big-loss fires.


The fire had been burning for about an hour before headquarters received an automatic alarm for smoke in a store two buildings away from the fire building. The two first-arriving engine companies quickly located the source of the fire in the basement of a furniture store. So far, so good...


To access the remainder of this piece of premium content, you must be registered with Firehouse. Already have an account? Login

Register in seconds by connecting with your preferred Social Network.

OR

Complete the registration form.

Required
Required
Required
Required
Required
Required
Required
Required
Required
Required

The fire had been burning for about an hour before headquarters received an automatic alarm for smoke in a store two buildings away from the fire building. The two first-arriving engine companies quickly located the source of the fire in the basement of a furniture store. So far, so good.

6_97_room1.jpg
Photo by Jo L. Keener
Not enough flow rate in a commercial building can spell disaster for offensive suppression operations. Here, firefighters are driven from a store when their small handline, designed for dwelling fires, did not have enough flow rate to knock down the fire.

After doors were forced, lines were stretched to the front and rear in an attempt to control a now rapidly spreading fire. Unfortunately, both companies stretched 1 3/4-inch lines and neither immediately secured a water source. A few hours later, the structure collapsed.

About two months later, when an engine company from this department was at fire school, the training officer told the members that all they really had to master was a single 1 3/4-inch line supplied by tank water, since this was all that was needed for any fire in the city. So much for lessons learned by this department's administration.

In a large southern city, the officer of the first-arriving engine company called for a second alarm when he was faced with a heavily involved auto parts store. He then proceeded to attack the fire with a single 1 3/4-inch line supplied from the engine's tank. The second-due engine company stretched a second 1 3/4-inch pre-connect to back up the first engine but, unfortunately, it too was supplied by only the onboard tank.

Imagine the problems that faced the first-arriving chief who had to immediately deal with a fast-spreading fire, deciding what to do with two out-of-position engine companies with no secured water source, and trying to sort out a number of rapidly arriving second-alarm companies requesting assignments.

Big-Loss Fires

Both cases are actual, and the losses were heavy. To a great extent, the fires were initially mismanaged because first-arriving officers based their attack tactics on the widespread, commonly misused and sometimes deadly "room and contents syndrome."

The room and contents syndrome occurs when departments gear their initial operations to combat a typical fire in one or two rooms of a single-family dwelling. Because these fires are the type most typically encountered, the practice of using a 1 1/2-inch or 1 3/4-inch pre-connected handline, supported initially only by onboard tank water, lulls managers into a common misconception that their department's standard pre-connect can handle any size fire. In most cases it will, since statistics indicate that most fires encountered by the average department consist of a room or two in a dwelling. In the big-loss fires, those involving multiple dwellings and commercial buildings, most departments are the losers simply because they cannot initially deliver the volume of water needed to overcome the heat being generated by a larger blaze.

In recent years, many departments have abandoned regular use of 2 1/2-inch lines in favor of medium-sized "all-purpose" handlines. The excuses usually given to justify this alarming trend range from "we just don't have the staffing to utilize big lines" to "the salesman told us that our new 1 3/4-inch hose and nozzle system will flow 300 gpm so the 2 1/2-inch lines aren't necessary any more."

6_97_room2.jpg
Photo by David P. Fornell
When this midwestern department switched to rear engine apparatus, the arrangement of the engine dictated that only the supply lines would lead out the rear and all offensive handlines would be carried in crosslay beds. A sales representative told the department that each bed could flow 250 gpm for a total of 1,000 gpm.

 


6_97_room3.jpg
Photo by David P. Fornell
During a calibrated flow test a few years after the rigs went into service, however, it was found that at the recommended pressures each line flowed only 80 gpm, which totaled only 320 gpm. The department then found out why its fire losses went up shortly after the units entered service.

 

This content continues onto the next page...